尺度や質問紙の内的整合性を評価します。データ行列を貼り付けてください(行 = 参加者、列 = 項目)。
Cronbach's alpha is the most widely used statistical measure of internal consistency reliability. It evaluates how consistently a set of items designed to measure a single construct relate to one another. Alpha ranges from 0 to 1, with higher values indicating greater internal consistency among the items. The measure was introduced by Lee J. Cronbach in 1951 as a generalization of the Kuder-Richardson formula 20 (KR-20), extending reliability estimation from dichotomous items to polytomous items such as Likert scales.
The formula is: α = (k / (k − 1)) × (1 − Σσ2i / σ2t), where k is the number of items, σ2i is the variance of each item, and σ2t is the variance of total scores. When item variances are small relative to the total variance, alpha approaches 1.
George and Mallery (2003) provide the most commonly cited benchmarks:
| Alpha Value | Level | Interpretation |
|---|---|---|
| ≥ .90 | Excellent | Very high internal consistency; check for redundancy if > .95 |
| ≥ .80 | Good | Suitable for most research purposes |
| ≥ .70 | Acceptable | Minimum threshold for exploratory research |
| ≥ .60 | Questionable | Item revision recommended |
| ≥ .50 | Poor | Scale revision strongly recommended |
| < .50 | Unacceptable | Scale should not be used; full reconstruction needed |
| Measure | Type | Best For |
|---|---|---|
| Cronbach's α | Internal consistency | Polytomous items on a single scale |
| Split-half | Internal consistency | Single-administration reliability with Spearman-Brown correction |
| Test-retest | Stability | Temporal stability over a defined interval |
| Inter-rater | Equivalence | Observer agreement in coding or scoring tasks |
1. Unidimensionality
All items should measure a single latent construct. Run exploratory or confirmatory factor analysis before computing alpha. For multidimensional scales, compute alpha per subscale.
2. Tau-equivalence
Alpha assumes equal factor loadings across items. When this assumption is violated, alpha serves as a lower bound of reliability. Consider McDonald's ω as an alternative.
3. Consistent Item Coding
All items must be coded in the same direction. Reverse-coded items must be recoded before analysis, or alpha will be artificially deflated.
4. Minimum Items (≥ 3)
Alpha is unstable with fewer than 3 items. With very many items, alpha can be inflated regardless of actual consistency. Report mean inter-item correlation (.15–.50) alongside alpha for short scales.
5. Adequate Sample Size
Aim for at least 5–10 respondents per item, with a minimum of 30 total. Small samples produce wide confidence intervals around alpha.
Internal consistency reliability of the Customer Satisfaction Scale was assessed using Cronbach's alpha. The 5-item scale demonstrated good reliability, α = .85. Alpha-if-item-deleted analysis indicated that all items contributed positively to scale reliability (range: .82–.84).
StatMate's Cronbach's alpha calculations have been validated against R's psych::alpha() function and SPSS Reliability Analysis. Item variances use the N − 1 denominator (sample variance). Item-total correlations are corrected (item removed from total). All supplementary statistics—alpha-if-deleted, split-half reliability, and Spearman-Brown prophecy—match R and SPSS output to four decimal places.
t検定
2群の平均値を比較
分散分析
3群以上の平均値を比較
カイ二乗検定
カテゴリ変数の関連を検定
相関分析
関係の強さを測定
記述統計
データを要約
サンプルサイズ
検出力分析・標本計画
1標本t検定
既知の値との比較
マン・ホイットニーU
ノンパラメトリック群間比較
ウィルコクソン検定
ノンパラメトリック対応検定
回帰分析
X-Yの関係をモデル化
重回帰分析
複数の予測変数
ロジスティック回帰
二値アウトカムの予測
因子分析
潜在因子構造の探索
クラスカル・ウォリス
ノンパラメトリック3群以上比較
反復測定
被験者内分散分析
二元配置分散分析
要因計画の分析
フリードマン検定
ノンパラメトリック反復測定
フィッシャーの正確検定
2×2表の正確検定
マクネマー検定
対応のある名義データの検定
データを入力して「計算」をクリックしてください
または「サンプルデータを読み込む」をクリックしてお試しください