KMO検定、バートレット検定、固有値分解、因子負荷量、共通性を含む探索的因子分析(EFA)を実施します。主成分分析(PCA)と主因子法(PAF)の抽出、バリマックスおよびプロマックス回転に対応。
Factor Analysis is a multivariate statistical technique that examines correlation patterns among observed variables to identify a smaller number of latent variables—called factors—that explain the shared variance in the data. It is widely used in psychology, education, marketing, and the social sciences for survey development, construct validation, and data reduction.
The technique originated in 1904 when Charles Spearman proposed a general intelligence factor (g) to explain positive correlations among mental tests. In the 1930s, Louis L. Thurstone advanced multiple factor analysis by introducing simple structure and rotation methods, laying the foundation for modern factor analysis. This calculator performs Exploratory Factor Analysis (EFA), which discovers latent structure without prior hypotheses, as opposed to Confirmatory Factor Analysis (CFA), which tests a pre-specified factor model.
Before extracting factors, verify that your data is suitable. The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy ranges from 0 to 1, with values ≥ .60 considered acceptable and ≥ .80 meritorious. Bartlett's test of sphericity tests whether the correlation matrix differs significantly from an identity matrix using a chi-square test. A significant result (p < .05) confirms that meaningful correlations exist among variables.
Principal Component Analysis (PCA) extracts components that explain total variance and is best for data reduction. Principal Axis Factoring (PAF) extracts factors explaining only shared variance and is preferred when seeking underlying latent constructs. PCA places 1.0 on the diagonal of the correlation matrix; PAF uses communality estimates instead.
The Kaiser criterion retains factors with eigenvalues > 1. The scree plot identifies the "elbow" where eigenvalues level off. Parallel analysis compares actual eigenvalues to those from random data and is considered the most accurate method. Using multiple criteria together is recommended.
Varimax (orthogonal) assumes uncorrelated factors and produces a single loading matrix—simple to interpret. Promax (oblique) allows factors to correlate and produces both a pattern matrix (unique contributions) and a structure matrix (total correlations). Use Varimax when factors are theoretically independent; use Promax when factor correlations are expected (common in social science). A factor inter-correlation ≥ .32 suggests oblique rotation is appropriate.
A researcher administers 8 Likert-scale personality items to 30 students, designed to measure Extraversion (Q1–Q3), Conscientiousness (Q4–Q6), and Openness (Q7–Q8). KMO = .69, Bartlett's χ²(28) = 112.45, p < .001. Three factors are extracted (eigenvalues 2.85, 2.12, 1.38), explaining 79.38% of total variance. All items load cleanly (≥ .75) on their intended factor with no cross-loadings. Communalities range from .62 to .74, indicating adequate explanation by the extracted factors.
Factor loadings represent the correlation between each variable and a factor; values ≥ .40 are meaningful and ≥ .70 are strong. Cross-loadings occur when a variable loads ≥ .32 on multiple factors, complicating interpretation—consider removing such items. Communalities indicate the proportion of each variable's variance explained by the retained factors; values below .20 suggest the variable does not fit the factor structure.
An exploratory factor analysis was conducted on 8 personality items using principal component analysis with Varimax rotation. The KMO measure verified sampling adequacy, KMO = .69, and Bartlett's test of sphericity was significant, χ²(28) = 112.45, p < .001. Three factors were retained based on the Kaiser criterion (eigenvalue > 1), explaining 79.38% of the total variance. All items loaded strongly (≥ .75) on their intended factors with no cross-loadings observed.
StatMate's factor analysis calculations have been validated against R's psych::fa() and psych::principal() functions, as well as SPSS Factor Analysis output. KMO values, Bartlett's chi-square, eigenvalues, factor loadings, communalities, and variance explained all match R and SPSS output to at least 4 decimal places. Varimax rotation uses Kaiser normalization; Promax uses kappa = 4 by default.
t検定
2群の平均値を比較
分散分析
3群以上の平均値を比較
カイ二乗検定
カテゴリ変数の関連を検定
相関分析
関係の強さを測定
記述統計
データを要約
サンプルサイズ
検出力分析・標本計画
1標本t検定
既知の値との比較
マン・ホイットニーU
ノンパラメトリック群間比較
ウィルコクソン検定
ノンパラメトリック対応検定
回帰分析
X-Yの関係をモデル化
重回帰分析
複数の予測変数
クロンバックのα
尺度の信頼性
ロジスティック回帰
二値アウトカムの予測
クラスカル・ウォリス
ノンパラメトリック3群以上比較
反復測定
被験者内分散分析
二元配置分散分析
要因計画の分析
フリードマン検定
ノンパラメトリック反復測定
フィッシャーの正確検定
2×2表の正確検定
マクネマー検定
対応のある名義データの検定
データを入力して「計算」をクリックしてください
または「サンプルデータを読み込む」をクリックしてお試しください