ロジスティック回帰(IRLS法)を使用して二値アウトカム(0/1)を1つ以上の予測変数から予測します。オッズ比、分類表、モデル適合統計量を含みます。
Binary logistic regression is a statistical method used to model the relationship between one or more predictor variables and a binary (dichotomous) outcome variable. Unlike linear regression, which predicts a continuous outcome, logistic regression predicts the probability that an observation belongs to one of two categories (coded as 0 and 1). The model uses the logistic (sigmoid) function to constrain predicted probabilities between 0 and 1.
Odds Ratio — Exp(B)
The odds ratio represents the multiplicative change in the odds of the outcome for a one-unit increase in the predictor. An odds ratio greater than 1 indicates increased odds, while a value less than 1 indicates decreased odds. A value of exactly 1 means the predictor has no effect.
Wald Test
The Wald test evaluates whether each individual predictor is statistically significant. It is calculated as the squared ratio of the coefficient to its standard error (Wald = (B/SE)²) and follows a chi-square distribution with 1 degree of freedom.
Pseudo R² Measures
Unlike linear regression, logistic regression does not have a true R². Cox & Snell R² and Nagelkerke R² are approximations that indicate how much of the variation in the outcome is explained by the model. Nagelkerke R² adjusts the Cox & Snell measure to range from 0 to 1.
The classification table (confusion matrix) compares predicted categories with observed categories using a 0.5 probability cutoff. Sensitivity (true positive rate) measures how well the model identifies actual positives, while specificity (true negative rate) measures how well it identifies actual negatives. Overall accuracy indicates the percentage of all cases correctly classified.
The Hosmer-Lemeshow test evaluates how well the model fits the data by dividing observations into groups based on predicted probabilities and comparing observed and expected frequencies. A non-significant result (p > .05) indicates adequate model fit, meaning the model's predictions are consistent with the observed data.
Example APA Report
A binary logistic regression was conducted to predict purchase behavior from age and income. The overall model was statistically significant, χ²(2) = 15.43, p < .001, Nagelkerke R² = .42. The model correctly classified 85.0% of cases. Age was a significant predictor, B = 0.12, Wald χ²(1) = 6.78, p = .009, OR = 1.13, 95% CI [1.03, 1.24].
StatMate's logistic regression uses the Iteratively Reweighted Least Squares (IRLS) algorithm, the same method used by R's glm() and SPSS. Convergence is checked at each iteration with a tolerance of 10&sup-;8. The implementation includes separation detection and uses jstat for chi-square probability distributions.
t検定
2群の平均値を比較
分散分析
3群以上の平均値を比較
カイ二乗検定
カテゴリ変数の関連を検定
相関分析
関係の強さを測定
記述統計
データを要約
サンプルサイズ
検出力分析・標本計画
1標本t検定
既知の値との比較
マン・ホイットニーU
ノンパラメトリック群間比較
ウィルコクソン検定
ノンパラメトリック対応検定
回帰分析
X-Yの関係をモデル化
重回帰分析
複数の予測変数
クロンバックのα
尺度の信頼性
因子分析
潜在因子構造の探索
クラスカル・ウォリス
ノンパラメトリック3群以上比較
反復測定
被験者内分散分析
二元配置分散分析
要因計画の分析
フリードマン検定
ノンパラメトリック反復測定
フィッシャーの正確検定
2×2表の正確検定
マクネマー検定
対応のある名義データの検定
Excel/スプレッドシートから貼り付け、またはCSVファイルをドロップ
Excel/スプレッドシートから貼り付け、またはCSVファイルをドロップ
データを入力して「計算」をクリックしてください
または「サンプルデータを読み込む」をクリックしてお試しください